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ABSTRACT 

An experimental investigation was conducted to determine static- 
stability and Magnus characteristics of three spin-stabilized ballistic 
shell configurations with small anti-Magnus vanes on the boattail.    The 
models (slightly larger than full scale) were tested at Mach numbers 
0. 7 through 2. 5 over an angle-of-attack range from -2 to 8 deg.    The 
Reynolds number,  based on a model diameter of 5.2 in. ,  was 1 x 10^ 
(for M. = 0. 7 to 1. 3) and 1. 7 x 106 (for M,,, = 1. 76 to 2. 5),  and the spin 
parameter (pd/2V„)) ranged from 0 to 0. 4 radians.    Results are pre- 
sented showing the effects of spin,   Mach number,  angle of attack,  and 
anti-Magnus vanes.    These results show that the vanes were effective 
in reducing both Magnus force and moment for two of the basic configu- 
rations and that the canted (7. 2-deg) vanes were more effective than 
the straight vanes. 

in 
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A Reference area,   model maximum cross-sectional area 
(see Fig.   2),   in.2 

'-'m Pitching-moment coefficient,  pitching moment/qooAd 

Cm Pitching-moment coefficient derivative,   BCTa/da,  per deg 

CJHJ Normal-force coefficient,  normal force/q^A 

C]\r Normal-force coefficient derivative,   dC-^lda,  per deg 

Cn Yawing- (Magnus-) moment coefficient, yawing moment/ 
q^Ad (see Fig.   2) 

Cn Magnus-moment spin derivative coefficient for (pd/2V<D) < 
P 0.15,  a2Cn/9(pd/2V00), per radian 

vui 



AEDC-TR-73-126 

Cn Magnus-moment coefficient derivative,  3 ^Cn/9(pd/2V0O)9a, 
0 per radian^ 

Cy Side-{Magnusf) force coefficient,  side force/q^A (see Fig. 2) 

Cy Magnus-force spin derivative coefficient for (pd/2V<B) < 0.15, 
P SCY/a(pd/2VCD), per radian 

Cy Magnus-force coefficient derivative,   9^Cy/9(pd/2VC0)9a, 
a per radian^ 

d Reference diameter,  model maximum diameter (see Fig. 2), 
in. 

M,,, Free-stream Mach number 

p Model spin rate (positive,  clockwise viewing from the base), 
radians/sec 

pd/2V0> Spin parameter,  radians 

p0 Tunnel stilling chamber pressure,  psia 

q«, Free-stream dynamic pressure,  psia 

Re Free- stream unit Reynolds number,  ft" *■ 

T0 Tunnel stilling chamber temperature, °R 

V,,, Free-stream velocity, ft/sec 

xt Axial distance from model nose to onset of transition,  in. 

a Angle of attack, deg 
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SECTION I 
INTRODUCTION 

The present test was conducted as part of a continuing investigation 
by the Naval Weapons Laboratory (NWL) for development work on bal- 
listic shells.    These projectiles are not statically stable and must be 
spin-stabilized.   The spin velocity tends to induce Magnus effects, which 
can lead to dynamic instabilities.   Both of these factors will influence the 
flight path.   This test was initiated to obtain Magnus-force and -moment 
and static-stability data on three configurations with small anti-Magnus 
vanes (vanes to reduce the Magnus forces).   The results will be used in 
estimating the performance of actual projectiles.    Data were obtained at 
Mach numbers from 0.7 to 2.5 at Reynolds numbers, based on a model 
diameter of 5. 2 in.,  of 1. 0 x 106 and 1. 7 x 106.    The angle of attack 
was varied from -2 to 8 deg,  and values of the spin parameter (pd/2V00) 
ranged from 0 to 0. 4 radians. 

SECTION II 
APPARATUS AND PROCEDURE 

2.1  TEST ARTICLES AND TEST MECHANISM 

The aluminum models were supplied by NWL and had been tested 
previously at AEDC.   The models were modified for the anti-Magnus 
vanes,  and model details are presented in Figs.   1 and 2, Appendix. 
The configurations of these projectiles have not been finalized, but 
the models are approximately full scale.    Two sets of vanes (Fig.  2d) 
were supplied.   One set (eight vanes) was canted 7. 2 deg, and the other 
set had no cant angle; all were attached on the boattail of the models. 
The knurl pattern on the boattail portion of configuration 0 (Fig.  lc) is 
used on the actual projectiles to secure a plastic sabot which serves as 
the spin band to spin the projectile in the gun barrel.   The plastic sabot 
is destroyed in the gun barrel and, therefore, is not included on the 
test models. 

The models were mounted on the Magnus-force test mechanism 
shown in Fig.  3.    Basically,  the Magnus-force test mechanism has a 
sting-mounted,  water-jacketed,  four-component balance with a shell 
mounted on ball bearings over the water jacket.    A two-stage,  air- 
driven turbine is mounted inside the model mounting shell at a fixed 
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axial position near the forward end of the sting.    The turbine is used to 
spin the model to some desired speed and then is disengaged with an air- 
operated sliding clutch to allow the model to spin freely on the ball bear- 
ings.    It is estimated that the turbine will produce a starting torque of 
50 in.-lb and a developed torque of approximately 100 in.-lb.   The mech- 
anism is designed to operate under normal-force loads up to 500 lb and 
axial-force loads of 125 lb and for a maximum spin rate of approximately 
25, 000 rpm. 

2.2  TEST FACILITIES 

Supersonic Wind Tunnel (A) is a continuous,  closed-circuit, vari- 
able density wind tunnel with an automatically driven flexible-plate- 
type nozzle and a 40- by 40-in. test section.    The tunnel can be operated 
at Mach numbers from 1. 5 to 6 at maximum stagnation pressures from 
29 to 200 psia,  respectively,  and stagnation temperatures up to 750CR 
(M,,, = 6).    Minimum operating pressures range from about one-tenth to 
one-twentieth of the maximum at each Mach number.    In most instances, 
Mach number changes may be made without stopping the tunnel.    The 
model can be injected into the tunnel for a test run and then retracted 
for model changes without stopping the tunnel flow. 

The Aerodynamic Wind Tunnel (4T) is a closed-circuit,  continuous 
flow, variable density tunnel capable of being operated at Mach numbers 
from 0. 20 to 1. 30.    At all Mach numbers the stagnation pressure can be 
varied from about 2 to 27 psia.    The test section is 48 in.  square and 
150 in.  long with perforated, variable porosity (0. 5 to 10 percent) walls. 
It is completely enclosed in a plenum chamber from which the air can be 
evacuated,  allowing part of the tunnel airflow to be removed through the 
perforated walls of the test section.    The wall perforations are 0. 50-in.- 
diam holes inclined 60 deg from the normal to the wall surface.    This 
design allows control of wave attenuation and blockage effects.    Further 
control of wall interference effects can be accomplished by converging 
or diverging the top and bottom test section walls by as much as 0. 50 
deg.    The tunnel model support system consists of a pitch sector,  strut, 
and sting attachment receptacle,  and the system has a pitch capability 
of from -12 to 28 deg with respect to the tunnel centerline. 
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2.3  INSTRUMENTATION 

Model forces and moments were measured with the VKF four- 
component,  moment-type,   strain-gage balance shown in Fig.  4.    The 
small outrigger side beams of the balance,  with semiconductor strain 
gages, were used to obtain the sensitivity required to measure small 
side loads while maintaining adequate balance stiffness for the larger 
pitch loads.    When a yawing moment is imposed on the balance,   second- 
ary bending moments are induced in the side beams.    Thus,  the out- 
rigger beams act as mechanical amplifiers,  and a normal-force to side- 
force capability ratio of 20 was achieved for a 500-lb normal-force 
loading.    Before testing,  static loads in each plane and combined static 
loads were applied to the balance,   simulating the range of model loads 
anticipated for the test.    The following uncertainties represent the bands 
for 95 percent of the measurement residuals based on differences be- 
tween the applied loads and the corresponding values calculated from 
the final data reduction equations. 

Balance Design Range of Measurement 
Component Load Static Loads Uncertainty 

Normal force,  lb 500 0 to 100 ±0.20 
Pitching moment*,   in.-lb 2500 0 to 200 ±0.50 
Side force,  lb 25 0 to 16 ±0.07, 
Yawing moment*,   in.-lb 125 0 to 50 ±0.10 

*About balance forward moment bridge 

The transfer distance to the model moment reference was measured with 
a precision of ±0. 005 in. 

2.4  TEST PROCEDURE 

The test procedure was to prespin the model to the desired spin 
rate,  disengage the clutch,  and record data as the model spin rate de- 
cayed.    For the models with canted vanes,   some additional data were 
obtained by holding the model with the brake,  releasing the brake, and 
taking data as the model spin rate increased.    Model spin rates were 
monitored using an internally mounted photocell-diode tachometer. 
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SECTION III 
TEST CONDITIONS AND DATA PRECISION 

3.1   TEST CONDITIONS 

The configurations tested and the corresponding test conditions are 
listed in the table below.    (X indicates Magnus data generally obtained 
from a = -2 to 8 deg. ) 

Configuration 

0 2 3 

8 4 8 8 8 8 
No Straight Canted Canted Straight Canted No Canted 

M» Vanes Vanes Vanes Vanes Vanes Vanes Vanes Vanes 

0.70 X 
0.90 X X X X X X 
1.00 X X X X X X X X 
1. 10 X X X X X 
1.20 X X X X X X X X 
1.30 X X X X X X 
1.76 X 
2.50 X 

The nominal test conditions at which the tests were conducted are 
given below. 

M„ 
Po- 

psia 
■o« v., 
'R     psia    ft/sec    Re x 10"°/ft 

2.4 0.70 9.4 550 2.3 765 
0.90 8. 3 2.8 960 
1. 00 8.0 3.0 1049 
1. 10 7. 9 3.1 1134 
1. 20 7. 8 3.3 1215 
1.30 7.9 ■ 

1 
3.4 1292 

1.76    14.7     560     5.9       1609 
2.50    21.0    560     5.4       1939 

4.0 
4.0 
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22  DATA PRECISION 

Uncertainties (bands which include 95 percent of the calibration 
data) in the basic tunnel parameters,  p0,   T0,  and M^,  were estimated 
from repeat calibrations of the instrumentation and from the repeata- 
bility and uniformity of the test section flow during tunnel calibration. 
These uncertainties were then used to estimate uncertainties in other 
free-stream properties,  using the Taylor series method of error prop- 
agation,  as follows: 

M. M. 

0. 70 ±1. 00 
0. 90 ±0. 72 
1. 00 ±0. 55 
1. 10 ±0. 73 
1. 20 ±1. 00 
1. 30 ±1. 30 
1. 76 ±0. 70 
2. 50 ±0. 30 

Uncertainty, percent 

Re 

±0.30 ±0.75 ±1. 03 ±0.75 ±0.98 
±0. 59 ±0.56 ±0.99 
±0.42 ±0.47 ±0.99 
±0.46 ±0.57 ±1.00 
±0.47 ±0. 74 ±1.01 

1 1 ' 1 
±0. 40 ±0.94 ±1.02 

±0.50 ±0.36 ±0. 70 ±0.51 ±0.73 
±0. 50 ±0. 36 ±0.78 ±0.30 ±0.83 

Measurements of the model pitch attitude,  including the model- 
balance deflection,  are precise within ±0. 05 deg based on repeat cali- 
brations.    The rpm precision is estimated to be ±5 rpm. 

The balance uncertainties listed.in Section 2. 3 were combined with 
uncertainties in the tunnel parameters,  assuming a Taylor series error 
propagation, to estimate the precision of the aerodynamic coefficients. 
The following uncertainties are those that were computed for the test 
conditions at which most of the data were obtained: 

Coefficient Uncertainty 

M„ CN 

±0.0023 

^m Cy 

±0. 0014 

cn 

0. 70 ±0. 0035 ±0. 0008 
0. 90 ±0. 0020 ±0.0028 ±0.0012 ±0. 0007 
1.00 ±0.0020 ±0.0027 ±0. 0011 ±0. 0006 
1. 10 ±0. 0020 ±0.0023 ±0. 0011 ±0. 0006 
1. 20 ±0.0025 ±0.0020 ±0. 0010 ±0. 0006 
1. 30 ±0.0023 ±0.0019 ±0. 0010 ±0.0006 
1. 76 ±0.0028 ±0.0030 ±0. 0006 ±0.0006 
2.50 ±0.0030 ±0. 0030 ±0.0006 ±0. 0005 
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Derivative Coefficient Uncertainty 

C*V Cma- CYp- <v CYP* rat 
nPo 

M„ deg"1 deg"1 rad-1 rad  * rad"2 rad"2 

0.70 ±0.0011 ±0.0018 ±0. 009 ±0.005 ±0.26 ±0. 14 
0.90 ±0.0010 ±0.0014 ±0. 008 ±0.005 ±0. 23 ±0. 14 
1.00 ±0.0010 ±0.0013 ±0. 007 ±0.004 ±0.20 ±0. 11 
1.10 ±0.0010 ±0.0011 ±0. 007 ±0. 004 ±0.20 ±0. 11 
1.20 ±0.0012 ±0.0010 ±0. 007 ±0. 004 ±0.20 ±0. 11 
1.30 ±0.0011 ±0.0010 ±0. 007 ±0. 004 ±0.20 ±0.11 
1.76 ±0.0014 ±0.0015 ±0.004 ±0.004 ±0. 12 ±0. 11 
2.50 ±0.0015 ±0.0015 ±0.004 ±0. 003 ±0. 12 ±0. 10 

It should be noted that data repeatability,  which is a measure of the 
random-type errors,  was generally well within the maximum propagated 
uncertainties quoted. 

SECTION IV 
RESULTS AND DISCUSSION 

These tests were conducted to determine static stability and the 
change in the Magnus force and moment produced by small vanes on the 
boattail of three ballistic shell configurations which were tested pre- 
viously.    Data were obtained at Mach numbers 0. 7 through 2.5 for 
values of the spin parameter (pd/2VaD) up to 0.4 radians.   The angle 
of attack ranged from -2 to 8 deg. 

The variations of normal force (CJJ) and pitching moment (Cm) 
with angle of attack are presented in Figs. 5, 6, and 7 for all configu- 
rations tested.    Since gun-launched projectiles are spin-stabilized, 
they are all statically unstable,  as expected.    For angles of attack up 
to 6 deg,  C^j and Cm are essentially linear functions of a.    The vari- 
ations of CJ,J   and Cm   with Mach number are shown in Fig.  8 for the 

three models.    For configurations 0 and 2,  Cj^   increased and Cm 

decreased with increasing Mach number for M„, > 0. 9.    For configura- 
tion 3, both Cj^   and Cm   generally increased with increasing Mach 

number.   As expected, the vanes increased Cjsj   and decreased Cm , 

and the cant angle had no effect on either parameter. 
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Figure 9 presents the typical variation of Cy and Cn with pd/2V0D 

for configuration 0 with eight canted vanes at M, = 1. 76.    The data 
typify the type of data, the amount of scatter,  and the number of points 
that were obtained as the model spin rate changed.    The data presented 
hereafter in this report show a computer fairing through the data points 
(a third-degree least-squares curve fit) instead of symbols for each 
data point.    The complete Cy and Cn versus pd/2Vao results are pre- 
sented in Figs.   10 through 17.    It should be noted that some scatter 
exists in the data that were obtained at M,,, = 1.0.    This scatter was 
caused primarily by sting and sector vibration at this operating con- 
dition.    The results generally indicate that both Cy and Cn were non- 
linear with pd/2V00 at the higher angles.of attack (a > 4 deg) and higher 
spin rates (pd/2Vao > 0. 2).    In addition, the usual negative Cy and posi- 
tive Cn for positive values at pd/2V(B and a were obtained for all con- 
figurations with the exception of configurations 0 and 2 with eight canted 
vanes (Figs.   13a and 15a). 

The linear portion of the data (slopes of Cy and Cn versus pd/2Va0 

for pd/2V00 < 0. 15) were used to examine the effects of angle of attack. 
These variations of Cy   and Cn   with angle of attack are presented in 

Figs.   18 through 20.    The results indicate that the magnitudes of both 
Cy   and Cn    generally increased continuously with angle of attack and 

were linear up to about 2 deg,  except for configuration 0 with eight 
canted vanes (Fig.   18d),  which had negative Cn   values at the lower 

angles of attack at M^ = 0. 9.    Thus,  the canted vanes appreciably re- 
duced the Magnus moment,  and this is shown more effectively in Figs. 
21 and 22.    The results also show that the canted vanes caused rather 
erratic variations at the larger angles of attack.    Figures 21 and 22 
present the variation of Cv     and Cn      with Mach number.    The data 

for configurations 0 and 2 (Figs.  21a and b) show a peak in both Cy 
■   Pa 

and Cn      near M^ = 1,  whereas for, configuration 3 (Fig.  21c),  the 
Pa 

magnitude of both parameters generally increased with Mach number 
(Ma, = 0. 9 through 1.3).    The effectiveness of the vanes in decreasing 
the Magnus components on configurations 0 and 2 is clearly shown, 
with the eight canted vanes being the most effective.    The vanes ap- 
parently reduced the body Magnus force by changing the flow pattern 
on the boattail.    In addition,  the axial force on the canted vanes pro- 
duced a negative yawing moment at angle of attack (Ref.   1).   However, 
for configuration 3 (Fig.   21c),  the vanes had very little effect on the 
Magnus force and increased the Magnus moment.   Apparently the vanes' 
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location on the forward portion of the long boattail reduced the local 
side force near the vanes but influenced the flow over the aft portion of 
the boattail such that there was a larger local side force there to give 
the larger yawing moment.    Results from the present tests compare 
well with the vanes-off data obtained in the previous investigation.   A 
comparison of the three models with the eight canted vanes is presented 
in Fig.  22.    The results show that the smallest Magnus force and mo- 
ment were obtained with configuration 0 and that Cn     was negative at 
M,,, = 0.9. Pa 

Platou (Ref.  2) has shown that body Magnus characteristics are 
dependent on flow conditions in the boundary layer,  and Pate and 
Schueler {Ref.   3) have shown that transition location is dominated by 
the aerodynamic noise present in wind tunnels and is a function of tun- 
nel size, with the smaller tunnel having a shorter distance to transition 
from the model nose for a given unit Reynolds number and Mach num- 
ber.    Since the location of transition is a possible factor affecting Mag- 
nus characteristics on spinning models, the estimated location of tran- 
sition on the model leeward side (from shadowgraph photographs) is 
presented in Fig.  23 for configuration 0 at M,,, = 1. 76 and 2. 5 in Tunnel 
A.    These data,  although not complete,  may be of benefit in the future 
in comparing the present data with those from other test facilities.    A 
typical shadowgraph photograph showing the flow patterns at M„ = 1. 76 
is presented in Fig.  24. 

SECTION V 
CONCLUDING REMARKS 

An investigation was conducted to determine the static-stability and 
Magnus characteristics of three Naval Weapons Laboratory ballistic 
shell configurations.    The tests were conducted at Mach numbers 0. 7 
through 2. 5 for an angle-of-attack range from -2 to 8 deg.    Results 
were obtained at spin parameter (pd/2V0O) values up to 0. 4 radians. 
The test results are summarized as follows: 

1. For configurations 0 and 2,  C]\T   increased and Cm 

decreased with increasing Mach number for M,,, > 
0. 9.    For configuration 3,  both parameters gener- 
ally increased with increasing Mach number. 

2. The vanes increased Civr   and decreased Cm  . 
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3. Both Cy and Cn were nonlinear with pd/2Vao at the 
higher angles of attack (a fe 4 deg) and pd/2V0B values 
(pd/2V.«&0. 2). 

4. Generally,  Cy was negative and Cn was positive for 
positive values of pd/2V(D and a. 

5. The magnitudes of both Cy    and Cn    increased with 

angle of attack and were linear up to about 2 deg. 

6. For configurations 0 and 2,  both Cy   and Cn    were a 

maximum   near M,,, = 1,  whereas for configuration 3 
the magnitude of both parameters generally increased 
with Mach number (M«, = 0. 9 to 1. 3). 

7. The vanes reduced the Magnus force and moment on 
configurations 0 and 2,  but increased the Magnus mo- 
ment on configuration 3. 

8. The canted vanes were more effective in reducing the 
Magnus forces than were the straight vanes. 
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b.  Complete Configurations 
Fig. 1   Continued 
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c.   Knurl Pattern 
Fig. 1   Concluded 
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a. Without Vanes 
Fig. 18  Variation of CYp and C„p with Angle of Attack for Configuration 0 
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Fig. 19  Variation of Cyp and C„p with Angle of Attack for Configuration 2 
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Fig. 20  Variation of Cyp and C„p with Angle of Attack for Configuration 3 
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Fig. 20  Concluded 
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Fig. 23 Onset of Transition on the Leeward Surface of Configuration 0 at 
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